[Seminar 2021.04.16] Hecke system of harmonic Maass functions and applications to modular curves of higher genera

by qsms posted Apr 19, 2021
?

단축키

Prev이전 문서

Next다음 문서

ESC닫기

크게 작게 위로 아래로 댓글로 가기 인쇄
Extra Form
일정시작 2021-04-16
배경색상 #FF5733

Date: 16 Apr. (Fri) 15:00 ~ 16:30

Place: Zoom

Speaker : 김창헌 (성균관대학교)

Title : Hecke system of harmonic Maass functions and applications to modular curves of higher genera

 

Abstract:

The unique basis functions $j_m$ of the form $q^{-m} + O(q)$ for the space of weakly holomorphic modular functions on the full modular group form a Hecke system. This feature was a critical ingredient in proofs of arithmetic properties of Fourier coefficients of modular functions and denominator formula for the Monster Lie algebra. In this talk, we consider the basis functions of the space of harmonic weak Maass functions fo an arbitrary level, which generalize $j_m$, and show that they form a Hecke system as well. As applications, we establish some divisibility properties of Fourier coefficients of weakly holomorphic modular forms on modular curves of genus $\geq 1$. Furthemore, we present a general duality relation that these modular forms satisfy. This is a joint work with Daeyeol Jeon and Soon-Yi Kang.