[SNU Number Theory Seminar 2022-05-06] On an upper bound of the average analytic rank of a family of elliptic curves

by qsms posted Apr 19, 2022
?

단축키

Prev이전 문서

Next다음 문서

ESC닫기

크게 작게 위로 아래로 댓글로 가기 인쇄
Extra Form
일정시작 2022-05-06
일정종료 2022-05-06
배경색상 #FF5733
  • Date :  2022-05-06  (Fri) 16:00

  • Place :  27-325 (SNU)

  • Speaker :  Keunyoung Jeong (Chonnam National University)
  • Title :   On an upper bound of the average analytic rank of a family of elliptic curves
  • Abstract;   The average of the rank of elliptic curves over rational numbers in a ``natural'' family is expected to be 1/2. For example, Goldfeld conjectured that the average of analytic ranks of the quadratic twist family of an elliptic curve over rational numbers is 1/2. In this talk, we will introduce machinery which gives an upper bound of the average of analytic ranks of a family of elliptic curves. To run the machinery, we need to know the probability that an elliptic curve in the family has good/multiplicative/additive reduction (actually we need something more) and use trace formulas. Using the machinery on the set of all elliptic curves over rationals and the set of elliptic curves with a given torsion subgroup respectively, we can compute an upper bound of the n-th moment of the average. This is the first result on an upper bound of the average of the family of elliptic curves with a fixed torsion group, as far as we know. This is joint work with Peter J. Cho.
  • Website:  https://sites.google.com/view/snunt/seminars

Articles

3 4 5 6 7 8