[QSMS  Monthly Seminar 2025-03-28] The rational cuspidal subgroup of J_0(N) / On irreducible elements of numerical semigroup algebras 

by qsms posted Mar 28, 2025
?

단축키

Prev이전 문서

Next다음 문서

ESC닫기

크게 작게 위로 아래로 댓글로 가기 인쇄
Extra Form
일정시작 2025-03-28
배경색상 #036eb7

2025년 03월 QSMS  Monthly Seminar

 

  • Date:   March 28th (Fri) 14:00 ~ 17:00
  • Place:  27-220 (SNU)
  • Contents:

 

Speaker:  유화종 (SNU)

Title:  The rational cuspidal subgroup of J_0(N)
Abstract:  We introduce generalized Ogg's conjecture which asserts that the rational torsion subgroup of J_0(N) is equal to the rational cuspidal subgroup of J_0(N). And then we discuss how to compute the rational cuspidal subgroup of J_0(N) when N is a prime power.

 

Speaker:  이석형 (SNU)
Title:  On irreducible elements of numerical semigroup algebras 

Abstract:  A numerical semigroup algebra over a field $F$ is an algebra of the form $F[x^{a_1}, ..., x^{a_k}]$, where $a_1, \ldots, a_k$ are coprime positive integers. Many properties of numerical semigroup algebra can be described via study of the set $S = \{a_1 n_1 + ... + a_k n_k : n_i \in \mathbb{Z}_{\ge 0} \}$, which we call numerical semigroup. We determine asymptotics of the number of irreducible elements of degree n in numerical semigroup algebra over a finite field, in terms of our new combinatorial invariant of the associated numerical semigroup. This is a joint work with Hyunsoo Cho, Kyeongjun Lee and Hayan Nam.

 

 


Articles

1 2 3 4 5 6 7 8 9