[Series of lectures 2/21, 2/23, 2/28] An introduction to geometric representation theory and 3d mirror symmetry

by qsms posted Feb 02, 2023


PrevPrev Article

NextNext Article


Larger Font Smaller Font Up Down Go comment Print
Extra Form
일정시작 2023-02-21
일정종료 2023-02-23
배경색상 #77CC00
반복주기 2
반복단위 1.일(단위)
  • Date:  2023-02-21 (Tue) 10:30 ~ 12:00 

           2023-02-23 (Thu) 10:30 ~ 12:00 

                       2023-02-28 (Tue) 10:30 ~ 12:00 

  • Place:  129-104 (SNU)
  • Title:  An introduction to geometric representation theory and 3d mirror symmetry
  • Speaker:  Justin Hilburn (Perimeter Institute)
  • Abstract:

The Beilinson-Bernstein theorem, which identifies representations of semi-simple Lie algebra \mathfrak{g} with D-modules on the flag variety G/B, makes it possible to use powerful techniques from algebraic geometry, especially Hodge theory, to attack problems in representation theory. Some successes of this program are the proofs of the Kazhdan-Lusztig and Jantzen conjectures as well as discovery that the Bernstein-Gelfand-Gelfand categories O for Langlands dual Lie algebras are Koszul dual.


The modern perspective on these results places them in the context of deformation quantizations of holomorphic symplectic manifolds: The universal enveloping algebra U(\mathfrak{g}) is isomorphic to the ring of differential operators on G/B which is a non-commutative deformation of the ring of functions on the cotangent bundle T^*G/B. Thanks to work of Braden-Licata-Proudfoot-Webster it is known that an analogue of BGG category O can be defined for any associative algebra which quantizes a conical symplectic resolution. Examples include finite W-algebras, rational Cherednik algebras, and hypertoric enveloping algebras.


Moreover BLPW collected a list of pairs of conical symplectic resolutions whose categories O are Koszul dual. Incredibly, these “symplectic dual” pairs had already appeared in physics as Higgs and Coulomb branches of the moduli spaces of vacua in 3d N=4 gauge theories.  Moreover, there is a duality of these field theories known as 3d mirror symmetry which exchanges the Higgs and Coulomb branch. Based on this observation Bullimore-Dimofte-Gaiotto-Hilburn showed that the Koszul duality of categories O is a shadow of 3d mirror symmetry.


In this series of lectures I will give an introduction to these ideas assuming only representation theory of semi-simple Lie algebras and a small amount of algebraic geometry.




1 2 3 4 5 6 7 8